
Abstract—High-speed routers rely on well-designed packet
buffers that support multiple queuing, large capacity and short
response times. Some researchers suggested a combined
SRAM/DRAM hierarchical buffer architecture to meet these
challenges. However, both the SRAM and DRAM need to
maintain a large number of dynamic queues which is a real
challenge in practice and limits the scalability of these approaches.

In this paper, we present a scalable, efficient and novel
distributed packet buffer architecture. Two fundamental issues
need to be addressed to make this feasible: (a) how to design
scalable packet buffers using independent buffer subsystems; and
(b) how to dynamically balance the workload among multiple
buffer subsystems without any blocking. We address these issues
by first designing a basic framework that allows flows to
dynamically switch from one subsystem to another without any
blocking. Based on this framework, we further devise a
load-balancing algorithm to meet the overall system requirements.
Both theoretical analysis and experimental results demonstrate that
our load-balancing algorithm and the distributed packet buffer
architecture can easily scale to meet the buffering needs of high
bandwidth links with large number of active connections.

Index Terms—Packet Buffer, Memory Hierarchy.

I. INTRODUCTION
igh-speed routers are increasingly being called upon to
deal with the rapid increase in the communication link

bandwidth, requiring them to switch packets extremely fast
to keep up with the growing line rate. This demands
sophisticated packet switching and buffering techniques.
Packet buffers need to be designed to support large capacity,
multiple queues and short response times.

The traditional rule of thumb for Internet routers states that
the routers should be capable of buffering RTT*R [1] data,
where RTT is a round-trip time for flows passing through the
router, and R is the line rate. In [6][9][12], this rule was
challenged. However, routers manufacturers still seem to
favor the use of large buffers. For instance, the Cisco CRS-1
modular service card with a 40Gbps line rate incorporates a 2
GB packet buffer memory per line card and per side (ingress
and egress) [13]. Meanwhile, in order to support fine-grained

This research work is partially supported by the following HKUST grant
RPC07/08.EG09.

IP quality of service (QoS) requirements, nowadays, a packet
buffer usually maintains thousands of queues. E.g. Juniper
E-series routers [7] maintain as many as 64000 queues.
Furthermore, a packet buffer should be capable of sustaining
continuous data streams for both ingress and egress.

With the ever-increasing line rate, current available
memory technologies, namely SRAM or DRAM alone
cannot simultaneously satisfy these three requirements. This
prompted researchers to suggest hybrid SRAM/DRAM
(HSD) architecture with a single DRAM [1], interleaved
DRAMs [14]-[18], or parallel DRAM [19] sandwiched
between SRAMs.

In this paper, we review previous work and present a
scalable, efficient and novel distributed packet buffer
architecture. Mathematical analysis indicates that the
proposed architecture together with its load-balancing
algorithm provide guaranteed performance in terms of low
time complexity, short access delay, upper-bounded drop
rate and uniform allocation of resources. Simulation results
further show that the distributed architecture reduces the
number of active queues significantly, yielding a more
efficient way of building a packet buffer.

The rest of the paper is organized as follows. In Section II,
we briefly review the related work from the literature. In
Section III, we describe the hardware architecture of the
distributed packet buffer and its load-balancing algorithm.
In Section IV, we present the analytical evaluation of some
properties of our architecture. Then we evaluate the
performance of our architecture using simulation in Section
V. Finally, we conclude our work in Section VI.

II. RELATED WORK
Current SRAM is fast enough with an access time of

around 2.5 ns [2], its largest size is limited by current
technologies to only a few MB and it is power hungry. On the
other hand, a DRAM can be built with large capacity, but the
typical memory access time is too large, around 40 ns [3]. It
decreases by only 10% every 18 months [4]. In contrast, as
the line-rate increases by 100% every 18 months [5],
DRAM will fall further behind in satisfying the
requirements of high-speed buffers.

Designing Packet Buffers in High-Bandwidth
Switches and RoutersI

Dong Lin, Mounir Hamdi and Jogesh Muppala

Department of Computer Science and Engineering
Hong Kong University of Science and Technology, Hong Kong

ldcse@ust.hk, hamdi@cse.ust.hk,
muppala@cs.ust.hk

H

2010 International Conference on High Performance Switching and Routing

978-1-4244-6971-0/10/$26.00 ©2010 IEEE 32

Iyer et al. [1] first introduced the basic Hybrid
SRAM/DRAM (HSD) architecture with one large DRAM
memory sandwiched between two smaller SRAM memories,
where the two SRAMs hold heads and tails of all the flow
queues and a DRAM maintains the middle part of the queues.
Shuffling packets between the SRAM and the DRAM is
under the control of a memory management algorithm
(MMA). They proposed three MMAs, each with different
tradeoffs between the size of the SRAM and the pipelined
delay. The SRAM size requirement for the HSD architecture
is O(Qb), where Q is the number of flow queues, and b is the
DRAM/SRAM access time ratio.

Shrimali et al. [14] modified the memory architecture in [1]
by using b interleaved DRAMs. The memory management
between the SRAM and the DRAM was based on a
randomized algorithm, thus providing only probabilistic
performance guarantees and suffering from out-of-sequence
problem seriously.

Some MMAs [15]-[17] based on deterministic algorithms
were proposed to avoid the out-of-sequence problem. Each
of them can be regarded as a solution to the problem of a
bipartite graph for cumulative matching [15]. The major
drawback of deterministic algorithms lies on their high time
complexity in finding the maximum matching. Given the fact
that a single cell could cost O(Q) iterations before finding a
maximum matching, the author acknowledged that the time
complexity in achieving the maximum matching could be
O(Q) in the worst case [16].

Feng et al. [19] proposed a parallel hybrid SRAM/DRAM
architecture named PHSD. Compared with the interleaved
architectures [14]-[17], the PHSD reduces the time
complexity of MMA to O(k), but still inherits most of the
drawbacks. Specifically, it still requires O(Qb)-size of
SRAM in the worst case.

Designing a packet buffer for general purpose is always a
difficult task. In contrast, for specific applications where
buffer behavior is predictable, the task can be greatly
simplified. Kabra et al. [18] introduced a parallel DRAM
approach that benefits by the foregone departure time. Lin et
al. [20] found the short-term stability of number of
connections in a trunk based on the analysis on real-life
traces. Taking this characteristic into account, they proposed
an approximation algorithm which serves the application of
fairness queuing.

III. DISTRIBUTED MEMORY HIERARCHY
When we carefully examine the hierarchical packet buffer

architectures, whether the HSD architecture [1], interleaved
DRAMs [14]-[18], or parallel DRAM [19], they all rely on
two parameters, Q and b. The required size of SRAM is
always O(Qb). According to the N2-hypothesis, the number
of flow connections is proportional to the square root of line
rate [8], thus Q has to be increased continuously at a speed
of k1/2, where k is the increasing speed of the line rate. On
the other hand, due to the sluggish advance in the access

delay of DRAM, continuously decreasing the access time of
SRAM will also make b increases at a speed of k. Hence,
the size of SRAM has to be increased exponentially at a
speed of k3/2.

In our view, all packet buffering techniques so far have
adopted a flow-agnostic approach while designing the packet
buffering algorithms. We must clarify that even though the
existing approaches do use Q flow queues, each flow is
treated the same by the buffer management algorithms. No
effort is made to exploit the inherent characteristics of the
flows like the arrival rate, burst sizes, transit time
requirements through the router etc. For small flows, this
incurs significant overhead, even though there is no
practical reason to maintain queues among multiple DRAM
chips to support this flow. However a flow-aware approach
to the problem, we believe, will yield new possibilities for
conquering the scalability problem.

In this paper, we will investigate a new dimension to the
problem, viz. how to extend the packet buffer architectures
by using independent packet buffer sub-systems. Such
distributed system where k independent packet buffers work
together providing increasing performance but at a linearly
increasing scale needs to be designed.

Fig. 1. Distributed scalable packet buffer architecture

Deciding on a suitable distributed system architecture that
achieves the best overall performance while incurring
minimal overhead is not straight-forward. As a starting point,
we consider a simple architecture. Fig. 1 illustrates an
example of a distributed packet buffer system consisting of
three compact packet buffers. Each compact packet buffer
acts as an independent unit implementing its own packet
buffer architecture and memory management algorithm.
Flows are mapped to the compact packet buffers and this
information is tracked in the flow table. A dispatching
module located between the flow table and packet buffers
delivers packets according to the tags. A FIFO queue in front
of each compact buffer deals with short-term bursty traffic,
and further forms a subsystem together with this compact
buffer. For the sake of ease of description, this FIFO queue
is named as front-buffer.

When a single compact buffer cannot satisfy the buffering
needs of a flow, then the packet distributor will map the
same flow to multiple buffers. Similarly, mapping multiple

...

Distributor

DDR

SRAM

...

Chip #1

Chip #2

Chip #3

Flow Table:

Compact Packet Buffers

IP Packet/Cell

Flow ID IP Packet/Cell

 Update flow state to divert/absorb

Aggregator

dispatch accordingly
Update queuing records

Update queuing records, fetch accordingly

Derive FlowID

Gather front-buffer information

33

active flows to a single compact buffer may overwhelm it.
The packet distributor implements a suitable load-balancing
scheme that keeps track of the information of each compact
buffer, including the utilization of storage and bandwidth,
and the number of active queues. Using this information, we
need to devise a load-balancing algorithm that can figure out
the best configuration of the flow table and flow mapping.

In order to achieve the above, we first build a basic
framework which allows flows to dynamically switch from
one subsystem to another without any blocking. Unlike the
simple linked-list based scheme in [16], in our distributed
system, any flow can be mapped to:
a) A single subsystem: we refer to such flows as “small”

flows.
b) All subsystems: we refer to such flows as “large” flows.

This distinction for a flow can be applied both at the
ingress (distributor) and egress (aggregator), thus leading to
combinations of states. e.g. a flow is in the state of
“large-small” if it is served by all subsystems in ingress and
served by only single subsystem in egress. Accordingly, a
single bit should be introduced to mark this turning point as
shown in Fig. 2, where each color represents a physical
queue in each subsystem.

=

smalllarge-small

large-small-large

updateupdate

absorb

divert

divert

update

Mark those turning points

small-largelarge

Fig. 2. Flow Allocation among Multiple Subsystems

Fig. 3. Flow States

Fig. 3 shows the state machine we have defined.
Although there could be thousands of combinations, we
only reserve six critical states. They are “unallocated”,
“large”, “small” and three intermediate states “large-small”,
“small-large” and “large-small-large”. Any flow can switch
its state between “small” and “large” smoothly with certain
constrains. Meanwhile, it is strictly controlled that any flow

can only possess no more than three serving states at any
time, i.e. at most 2 turning points. This helps the system
minimize the overhead of state maintenance.

Based on the state machine above, we devise a
load-balancing algorithm. The pseudo code of our algorithm
is shown in Fig. 4. The algorithm is naturally separated into
three tasks that are implemented at the distributor, compact
packet buffer subsystem and the aggregator respectively.
The tasks communicate with each other through the
centralized flow table.

Distributor:
For each cell, derive its flow ID, get access to the flow table accordingly.
If the state of this flow is “unallocated”, then
1) Find a subsystem currently the lightest loaded by comparing the length
of waiting lists in each front-buffer. In case all are equal, select randomly.
2) Allocate this new flow to an empty queue of the selected subsystem.
3) Record this information and update the flow state to “small”.
4) Dispatch this cell accordingly.
Else if the state of this flow is “small” or “small-large”, then
Dispatch the cell to the corresponding subsystem accordingly.
Else then
Dispatch the cell to the corresponding subsystem in per-flow round-robin*.
Each Compact Packet Buffer Subsystem:
Fetch one cell from the front-buffer, save it to the corresponding queue.
If the number of backlogged cells is no more than THRESHOLD &_
 current cell belongs to a flow which is originally severed as large &_
 it has been diverted for less than MaxDivertTimes, then
Update its flow state to small-large, bit-mark this cell as turning point.
Else if the number of backlogged cells is more than 2* THRESHOLD &_
 current cell belongs to a flow which is originally severed as small or
small-large, then
Update its flow state to small-large, bit-mark this cell as turning point,
increase the MaxDivertTimes by one.
Else then do nothing.
Aggregator:
Given a flow ID to fetch,
1) Delay this request for DelayFactor timeslots
2) Check the flow table.
3) Fetch one cell in per-flow round-robin* or from one subsystem only.
4) If it is a turning point, then update the flow state accordingly.

* per-flow round-robin: if a packet is the i-th cell in a flow, then it should
be dispatched into DRAM j, where j = i mod k.

Fig. 4. Load-balancing algorithm
Here are some typical behaviors of the load-balancing

algorithm. Whenever the first cell of a new flow arrives, the
distributor maps it to a subsystem that is currently the
lightest loaded. For this new flow, the destination subsystem
reserves an empty queue and updates the flow table and
changes the state of this flow from “unallocated” to “small”.
For a single flow, the state of “small” could last for quite a
long time. When the queue becomes empty, the state of flow
is changed back to “unallocated”.

If a subsystem is temporarily overloaded, (i.e. the
backlogged cells residing at the front-buffer is beyond a
threshold.) the subsystem can divert the newly arriving cells
to other subsystems. The diverting can be achieved by
randomly changing the state of any new arrival cells to
“large-small” if it is originally served as “small”. To be
more precise, the subsystem will still accept any new arrival
cells. But if the new arrival cells belongs to a flow which is
originally served by this subsystem only (i.e. its state is
“small”), the subsystem will mark the cell, and update the

Large
Small-Large

Large-Small Small

Large-Small-Large

Unallocated

divert

update

updateupdate

absorb

divert

allocate

update

update

update

update

34

flow table by changing its corresponding flow state from
“small” to “large-small”. At the ingress, if the serving state
of a flow is changed to “large”, the cells of this flow will be
dispatched to all subsystems in a per-flow round-robin
manner. In this fashion, given a distributed system consisted
with K subsystems, (K-1)/K of the traffic of this “small”
flow can immediately be diverted to other subsystems which
helps to relieve the burden of the overloaded subsystem. As
the output continues, the “large-small” flow will be updated
to “large” flow when the previously marked cell is fetched.

Now this large flow can be absorbed by lightly loaded
subsystems. Generally speaking, it is a reverse process of
the flow diversion described above except that one state
called “large-small-large” is introduced. With this state, it
provides us with an alternative choice that any flow can be
diverted immediately at any time.

IV. ANALYTICAL EVALUATION
In this section, we present a detailed explanation about

the parameters of our load-balancing algorithm, such as
MaxDivertTimes, THRESHOLD and DelayFactor. In
particular, how these parameters affect system performance.

It is difficult to estimate the traffic of a flow in real life.
Our load-balancing algorithm introduces a probabilistic
method which distinguishes the type of flow dynamically.
Assume a flow contributes P (0<P≤1) unit of traffic and a
subsystem is capable of serving 1 unit of traffic at most, this
flow has a probability of P to be diverted when it is served
as small flow. As the flow state changes dynamically, any
long-lasting active flow is finally served as a large flow.
Because the flow which has been diverted for no less than
MaxDivertTimes cannot be absorbed any longer according
to the load-balancing algorithm. Our key observation is that
a flow contributing more traffic has higher probability to be
diverted. Hence, the expected time that a flow achieves its
final state could vary greatly. It can be formulated as
follows, where m equals to the MaxDivertTimes.

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = ∑ C𝑚𝑚+𝑖𝑖−1
𝑚𝑚−1∞

𝑖𝑖=0 𝑃𝑃𝑚𝑚 (1− 𝑃𝑃)𝑖𝑖 (𝑚𝑚 + 𝑖𝑖) (1)

It increases exponentially with P while linearly with m.
Thus, given average lifetime of flows, we can achieve
approximation of distinguished services for different flows
when m is appropriately chosen. e.g. the state of small flow
varies between large and small rarely and remains small for
the most of the time. In contrast, a large flow quickly stays
at “large” after a series of frequent state alternations.

The proposed load-balancing algorithm only takes the
bandwidth into consideration. One straightforward concern
is that the number of active queues in each subsystem could
vary greatly and further result in unbalanced allocation of
physical queues. Here, we prove that such kind of
unbalanced allocation can be neglected when the number of
active flows is large enough. First, considering a simple
condition where no subsystem exceeds its maximal capacity.
Despite the variable size of flows, our load-balancing can be

seen as a randomized scheduling as long as no cell is
backlogged cells in the front-buffers. According to the
chernoff bound [22], in a distributed system with K
subsystems and c*lnK flows, the probability that the i-th
subsystem received 1.1 times the average number of flows
can be formulated as follows.

Pr[𝑋𝑋𝑖𝑖 > (1 + 0.1 ∗ 𝑐𝑐 ∗ ln𝐾𝐾)] < e−
𝑐𝑐∗ln𝐾𝐾

400 = 𝐾𝐾− 𝑐𝑐
400 (2)

According to the union bound,

Pr[𝑋𝑋𝑖𝑖 < (1 + 0.1 ∗ 𝑐𝑐 ∗ ln𝐾𝐾) for any 𝑖𝑖 ≤ 𝐾𝐾] > 1 −𝐾𝐾1− 𝑐𝑐400 (3)

When K=4 and there are 10400 (>5200lnK) flows, there
is at least 99.99999% chance that no subsystem gets more
than 1.1 times of the average number of flows.

Now, let us consider more complicated cases where
subsystems are unevenly loaded. Since any flow can
dynamically switch its state between small and large for
several times and the large flows can be randomly absorbed
by lightly loaded subsystems, this phenomenon is equivalent
to randomly dispatch any single flow for many times which
yields more uniform distribution of active flows. In other
words, the flow distribution in such cases is at least as good
as the simple case. Our later simulations confirmed it.

Next, we present a detailed analysis showing that the
transfer delay of cells can be upper-bounded by a constant,
thus a delay lasting for DelayFactor timeslots guarantees
in-order data operation within each flow. This conclusion is
based on two key features. First, each cell is transferred
from front-buffer to DRAM with constant rate. Once a cell
is dispatched into a subsystem, the only delay lies on the
queuing delay inside front-buffers. Second, the state
machine we defined for active flows allows immediate
diverting at any time and the diverted traffics are always
dispatched in round-robin fashion. As a result, the proposed
scheme can be modeled as K independently and identically
distributed finite capacity M/D/1/n queuing systems.

Because of space limitation, details are omitted here.
Trading off between the loss probability and the response
time, when 𝜌𝜌 = 0.9 (90% traffic intensity), we choose
n=100 as a typical value of buffer depth for each subsystem.
Accordingly, the loss probability can be neglected as it
reaches 10-9. Thus, the response time is upper-bounded by
100 with a probability of 1-10-9. Given DelayFactor = 100,
the probability that out-order happens is no more than 10-9.
Notice that the practical inputs is always time slotted, thus
the system performance in practice should be at least as
good as it is derived above. Recall that our load-balancing
algorithm can perform the same as a greedy algorithm when
the system is heavily loaded (i.e.100% traffic intensity).
Thus, the utilization of subsystems is always 100% as long
as no front-buffer goes empty. In other words, the queuing
delay has to be finally stabilized with or without the
speedup. The upper-bound of queuing delay does not rely
on the speedup. A speedup just helps to reduce it.

Obviously, the selection of THRESHOLD during this

35

process is extremely important as it determines the time
when the load-balancing algorithm starts to behave like a
greedy algorithm. A big THRESHOLD helps to stabilize the
flow states preventing unnecessary fluctuations. In contrast,
a small THRESHOLD helps to strength the load-balancing
increasing the utilization of front-buffers so as to reduce the
upper-bound of queuing delay. It is straightforward that
THRESHOLD should be less than 0.5*DelayFactor. We are
also aware that the utilization of front-buffers with
load-balancing should be better than that of in a PHSD[19].
So THRESHOLD can be further decreased. In the latter
simulations, we found that the average queuing delay for
PHSD with 100% traffic intensity is around 50, thus a
THRESHOLD around 10 should be a good choice.

V. SIMULATIONS
Our experimental results are presented in this section.

Unless otherwise specified, the default for all the
experiments is as specified in Table 1.

TABLE. 1. DEFAULT PARAMETERS
DelayFactor 100

THRESHOLD 10
The maximal depth of front-buffers 100

Number of subsystems 4

We define a timeslot as the minimal working span where
each subsystem is capable of processing exactly one cell.
Since there are four subsystems, for each timeslot, at most
four cells are generated depending on the traffic intensity.

Analyses on real-life traces indicated that the top 10% of
flows account for over 90% of the packets and the bytes
transmitted [23]. To be modest, in the following simulations,
top 20% of flows accounts for 80% overall cells.

Meanwhile, in order to observe the dynamic behavior of
the entire system, the simulations are always separated into
three phases. Assume the simulation lasts for X timeslots.
For the first 0.2*X timeslots, there is only input without
output where cells are backlogged. In this way, we can
create an initial backlog and simulate the situation when the
congestion happens. After 0.2*X+1 timeslots, a full-speed
output begins while input maintains. With backlogged cells
in the first phase, we can monitor the system performance in
detail, especially how the load-balancing algorithm behaves.
After 0.5*X timeslots, the input stops while only the output
maintains fetching any backlogged cells. In this way, we can
simulate the situation when the system is lightly loaded.
Moreover, we choose the parallel system (i.e. PHSD in [19])
as the basic reference standard of our distributed system.
Because it is the best parallel architecture we known so far
which represents the previous “flow-agnostic” approaches.

Fig. 5 presents the results of total number of active
queues under different situations. There are 100 distinct
flows in total and the simulation lasts for 107 timeslots. As
shown in the figures, the parallel system (i.e. PHSD in [19])
always dispatches the flows in per-flow round-robin
introducing a lot of overheads. The total number of active
queues always achieves 400 during the initial periods no

Fig. 5. The overall active queues for both architectures

Fig. 6. Flow-aware services based on probability method

Fig. 7. Active queues allocations among four subsystems

0 2000 4000 6000 8000
0

50

100

150

200

250

300

350

400

To
tal

 N
um

be
r o

f A
cit

ive
 Q

ue
ue

s

Sampling Per 100 Timeslots

 80% intensity, Distributed
 80% intensity, Parallel
 100% intensity, Distributed
 100% intensity, Parallel

0 2000 4000 6000 8000
0

50

100

150

200

250

300

350

400

 60% intensity, Distributed
 60% intensity, Parallel
 40% intensity, Distributed
 40% intensity, Parallel

To
tal

 N
um

be
r o

f A
cti

ve
 Q

ue
ue

s

Sampling Per 100 Timeslots

0 2000 4000 6000
0

5

10

15

20

25

30

35

 Subsystem #1
 Subsystem #2
 Subsystem #3
 Subsystem #4

Nu
m

be
rO

fQ
ue

ue
sI

nE
ac

hS
ub

sy
st

em

SamplingPer 100 Timeslots

80% intensity, 100 Flows

0 2000 4000 6000
0

20

40

60

80

100

100% intensity,100 Flows

 Subsystem #1
 Subsystem #2
 Subsystem #3
 Subsystem #4

Nu
m

be
rO

fQ
ue

ue
sIn

Ea
ch

Su
bs

ys
te

m

SamplingPer 100 Timeslots 0 2000 4000 6000
0

50

100

150

200

250

 Subsystem #1
 Subsystem #2
 Subsystem #3
 Subsystem #4

Nu
m

be
rO

fQ
ue

ue
sI

nE
ac

hS
ub

sy
st

em

SamplingPer 100 Timeslots

80% intensity, 1000 Flows

0 2000 4000 6000
0

100

200

300

400

500

100% intensity,1000 Flows

 Subsystem #1
 Subsystem #2
 Subsystem #3
 Subsystem #4

N
um

be
rO

fQ
ue

ue
sI

nE
ac

hS
ub

sy
st

em

SamplingPer 100 Timeslots

36

matter the intensity of injected traffic. In contrast, our
distributed system which introduces the “flow-aware”
approach always results in much less active queues. Taking
80% traffic intensity as an example, in the first phase, the
distributed scheme only maintain around 165 active queues
which is about 42% that of PHSD. As the second phase
starts, the number of active queues for both architectures
drops greatly. However, the distributed one still outperforms
the PHSD where 35 and 100 queues are maintained
respectively. As the further decreasing of traffic intensities,
our distributed system shows more obvious advantages.

By further prolonging the simulation to 108 timeslots, we
arbitrarily selected two flows (one large, one small) to have
a close-up view of their states. As illustrated in Fig. 6, when
the intensity of traffic is 100%, the flow states of these two
flows change frequently. We observe that the large flow is
mapped to multiple subsystems most of the time, while the
small flow is served by single subsystem mostly. The
probability method works quite well.

Since our algorithm does not refer the flow assignment
status in balancing, we are curious about the actual
distribution of active queues among subsystems. Fig. 7
shows the distribution of active queues among multiple
subsystems. By increasing flow number from 100 to 1000,
we observe that the unbalanced distribution is greatly
improved which matches pervious mathematical analyses.

We also monitor the length of front-buffers. As shown in
Fig. 8, the average FIFO lengths for both algorithms are
much less than 100 and the distributed system always
outperform the parallel one. We clearly observe that the
average FIFO length of distributed system stays at a
constant around 16, which matches the mathematic analyses
as well. Besides smaller average value of FIFO length, the
distributed system also performs more smoothly.

Fig. 8. The number of backlogged cells in a front-buffer

VI. CONCLUSION
Unlike the previous approaches [1][14]-[19], our design

dispenses with both the head and tail caches, keeping only
tiny distributed front-buffers inside each subsystem. Each
flow is only mapped to approximately one queue in a
compact buffer. Thus, it maintains much less physical queues
compared to other approaches and reduces the size of
SRAM significantly.

The significance of this research lies in the bold new

direction towards distributed scalable buffer design that we
plan to pursue. In particular, our approach yields a scalable,
independent subsystem based packet buffer architecture that
can easily be tailored to meet the specific line rate and traffic
requirements for different switches, and match the flow-level
requirements including bandwidth and delay guarantees
within a switch. Our approach will also yield a power
efficient buffer design, where parts of the buffer may be
switched on and off based on the real-time traffic arrival rates
and buffering requirements.

REFERENCES
[1] S. Iyer, R. Kompella and N. McKeown, “Designing packet buffers for

router linecards”, in IEEE Transactions on Networking, vol.16, Jun.
2008, Issue 3.

[2] Samsung SRAM
Chips, http://www.samsung.com/global/business/semiconductor/prod
ucts/sram/Products_HighSpeedSRAM.html

[3] Samsung DRAM
Chips, http://www.samsung.com/global/business/semiconductor/prod
ucts/dram/Products_DRAM.html

[4] J.Corbal, R.Espasa, and M.Valero, “Command vector memory
systems: High performance at low cost,” In Proceedings of the
International Conference on Parallel Architectures and Compilation
Techniques, pp.68-77, October 1998.

[5] K.G. Coffman and A.M.Odlyzko, “Is there a “Moore’s Law” for data
traffic?” Handbook of Massive Data Sets, eds., Kluwer,
2002,pp.47-93.

[6] G. Appenzeler, I.Keslassy, and N.McKeown, “Sizing Router Buffers,”
ACM SIGCOMM Computer Comm. Rev., Vol. 34, No. 4, Oct. 2004,
pp. 281-292.

[7] Juniper E Series Router, http://juniper.net/products/eseries/
[8] B.St.Arnaud, “Scaling issues on Internet networks,”

2001, http://www.canet3.net/library/papers/scaling.pdf
[9] D. Wischik and N. McKeown, “Part I: Buffer Sizes for Core Routers,”

Computer Comm. Rev., vol. 35, no. 3, pp. 75-78, 2005.
[10] G. Iannaccone, M. May, and C. Diot, “Aggregate Traffic Performance

with Active Queue Management and Drop from Tail,” SIGCOMM,
vol. 37, pp. 277-306, 2001.

[11] C. Crisp, “Provisioning Internet Backbone Networks to Support
Latency Sensitive Applications,” PhD dissertation, Stanford Univ.,
June 2002.

[12] A. Dhamdhere, H. Jiang, and C. Dovrolis, “Buffer Sizing for
Congested Internet Links,” Proc. IEEE Infocomm, Mar. 2005.

[13] Cisco, “Cisco Carrier Router
System,” http://www.cisco.com/en/US/products/ps5763/index.html

[14] G. Shrimali and N. McKeown, "Building Packet Buffers with
Interleaved Memories", HPSR 2005.

[15] F. Wang and M. Hamdi, “Scalable Router Memory Architecture
Based on Interleaved DRAM”, HPSR 2006.

[16] J. Garcia, J. Corbal, L. Cerda`, and M. Valero, “Design and
Implementation of High-Performance Memory Systems for Future
Packet Buffers,” Proc. MICRO ’03, Dec. 2003.

[17] J. Garcia-Vidal, M. March, L. Cerda, J. Corbal and M. Valero, “A
DRAM/SRAM Memory Scheme for Fast Packet Buffers,” IEEE
Trans. On Computers, Vol. 55, No. 5, May 2006, pp. 588-602.

[18] M. Kabra, S. Saha and B. Lin, “Fast Buffer Memory with
Deterministic Packet Departures,” Proc. 14th IEEE Symp. High
Performance Interconnects (HOTI 06), IEEE CS Press, 2006, pp.
67-72.

[19] Feng Wang,Hamdi, M.,Muppala, J.K,"Using Parallel DRAM to Scale
Router Buffers," IEEE TRANSACTIONS ON PARALLEL AND
DISTRIBUTED SYSTEMS, VOL. 20, NO. 5, MAY 2009.

[20] Dong LIN and Mounir Hamdi, “Two-stage Fair Queuing Using
Budget Round-Robin”, accepted by ICC 2010.

[21] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling
innovation in campus networks,” SIGCOMM Comput. Commun. Rev.,
Vol. 38, No. 2, 2008, pp. 69–74.

[22] Jon Kleinberg and Eva Tardos, Algorithm Design, Prentice Hall, pp.
758-760,2006.

[23] Fang W, and Peterson L, “Inter-as traffic patterns and their
implications,” Proc. IEEE GLOBECOM 1999.

0 2000 4000 6000 8000
0

20

40

60

80

100

 Distributed
 Parallel

FIF
OL

en
gth

InS
ing

leS
ub

sy
ste

m

Sampling Per 100 Timeslots

100% intensity

37

