
Abstract—High-speed routers rely on well-designed packet 
buffers that support multiple queuing, large capacity and short 
response times. Some researchers suggested a combined 
SRAM/DRAM hierarchical buffer architecture to meet these 
challenges. However, both the SRAM and DRAM need to 
maintain a large number of dynamic queues which is a real 
challenge in practice and limits the scalability of these approaches. 

In this paper, we present a scalable, efficient and novel 
distributed packet buffer architecture. Two fundamental issues 
need to be addressed to make this feasible: (a) how to design 
scalable packet buffers using independent buffer subsystems; and 
(b) how to dynamically balance the workload among multiple 
buffer subsystems without any blocking. We address these issues 
by first designing a basic framework that allows flows to 
dynamically switch from one subsystem to another without any 
blocking. Based on this framework, we further devise a 
load-balancing algorithm to meet the overall system requirements. 
Both theoretical analysis and experimental results demonstrate that 
our load-balancing algorithm and the distributed packet buffer 
architecture can easily scale to meet the buffering needs of high 
bandwidth links with large number of active connections. 
 

Index Terms—Packet Buffer, Memory Hierarchy. 

I. INTRODUCTION 
igh-speed routers are increasingly being called upon to 
deal with the rapid increase in the communication link 

bandwidth, requiring them to switch packets extremely fast 
to keep up with the growing line rate. This demands 
sophisticated packet switching and buffering techniques. 
Packet buffers need to be designed to support large capacity, 
multiple queues and short response times. 

The traditional rule of thumb for Internet routers states that 
the routers should be capable of buffering RTT*R [1] data, 
where RTT is a round-trip time for flows passing through the 
router, and R is the line rate. In [6][9][12], this rule was 
challenged. However, routers manufacturers still seem to 
favor the use of large buffers. For instance, the Cisco CRS-1 
modular service card with a 40Gbps line rate incorporates a 2 
GB packet buffer memory per line card and per side (ingress 
and egress) [13]. Meanwhile, in order to support fine-grained 
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IP quality of service (QoS) requirements, nowadays, a packet 
buffer usually maintains thousands of queues. E.g. Juniper 
E-series routers [7] maintain as many as 64000 queues. 
Furthermore, a packet buffer should be capable of sustaining 
continuous data streams for both ingress and egress.  

With the ever-increasing line rate, current available 
memory technologies, namely SRAM or DRAM alone 
cannot simultaneously satisfy these three requirements. This 
prompted researchers to suggest hybrid SRAM/DRAM 
(HSD) architecture with a single DRAM [1], interleaved 
DRAMs [14]-[18], or parallel DRAM [19] sandwiched 
between SRAMs.  

In this paper, we review previous work and present a 
scalable, efficient and novel distributed packet buffer 
architecture. Mathematical analysis indicates that the 
proposed architecture together with its load-balancing 
algorithm provide guaranteed performance in terms of low 
time complexity, short access delay, upper-bounded drop 
rate and uniform allocation of resources. Simulation results 
further show that the distributed architecture reduces the 
number of active queues significantly, yielding a more 
efficient way of building a packet buffer.  

The rest of the paper is organized as follows. In Section II, 
we briefly review the related work from the literature. In 
Section III, we describe the hardware architecture of the 
distributed packet buffer and its load-balancing algorithm. 
In Section IV, we present the analytical evaluation of some 
properties of our architecture. Then we evaluate the 
performance of our architecture using simulation in Section 
V. Finally, we conclude our work in Section VI.   

II. RELATED WORK 
Current SRAM is fast enough with an access time of 

around 2.5 ns [2], its largest size is limited by current 
technologies to only a few MB and it is power hungry. On the 
other hand, a DRAM can be built with large capacity, but the 
typical memory access time is too large, around 40 ns [3]. It 
decreases by only 10% every 18 months [4]. In contrast, as 
the line-rate increases by 100% every 18 months [5], 
DRAM will fall further behind in satisfying the 
requirements of high-speed buffers.  
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Iyer et al. [1] first introduced the basic Hybrid 
SRAM/DRAM (HSD) architecture with one large DRAM 
memory sandwiched between two smaller SRAM memories, 
where the two SRAMs hold heads and tails of all the flow 
queues and a DRAM maintains the middle part of the queues. 
Shuffling packets between the SRAM and the DRAM is 
under the control of a memory management algorithm 
(MMA). They proposed three MMAs, each with different 
tradeoffs between the size of the SRAM and the pipelined 
delay. The SRAM size requirement for the HSD architecture 
is O(Qb), where Q is the number of flow queues, and b is the 
DRAM/SRAM access time ratio.  

Shrimali et al. [14] modified the memory architecture in [1] 
by using b interleaved DRAMs. The memory management 
between the SRAM and the DRAM was based on a 
randomized algorithm, thus providing only probabilistic 
performance guarantees and suffering from out-of-sequence 
problem seriously. 

Some MMAs [15]-[17] based on deterministic algorithms 
were proposed to avoid the out-of-sequence problem. Each 
of them can be regarded as a solution to the problem of a 
bipartite graph for cumulative matching [15]. The major 
drawback of deterministic algorithms lies on their high time 
complexity in finding the maximum matching. Given the fact 
that a single cell could cost O(Q) iterations before finding a 
maximum matching, the author acknowledged that the time 
complexity in achieving the maximum matching could be 
O(Q) in the worst case [16]. 

Feng et al. [19] proposed a parallel hybrid SRAM/DRAM 
architecture named PHSD. Compared with the interleaved 
architectures [14]-[17], the PHSD reduces the time 
complexity of MMA to O(k), but still inherits most of the 
drawbacks. Specifically, it still requires O(Qb)-size of 
SRAM in the worst case. 

Designing a packet buffer for general purpose is always a 
difficult task. In contrast, for specific applications where 
buffer behavior is predictable, the task can be greatly 
simplified. Kabra et al. [18] introduced a parallel DRAM 
approach that benefits by the foregone departure time. Lin et 
al. [20] found the short-term stability of number of 
connections in a trunk based on the analysis on real-life 
traces. Taking this characteristic into account, they proposed 
an approximation algorithm which serves the application of 
fairness queuing. 

III. DISTRIBUTED MEMORY HIERARCHY 
When we carefully examine the hierarchical packet buffer 

architectures, whether the HSD architecture [1], interleaved 
DRAMs [14]-[18], or parallel DRAM [19], they all rely on 
two parameters, Q and b. The required size of SRAM is 
always O(Qb). According to the N2-hypothesis, the number 
of flow connections is proportional to the square root of line 
rate [8], thus Q has to be increased continuously at a speed 
of k1/2, where k is the increasing speed of the line rate. On 
the other hand, due to the sluggish advance in the access 

delay of DRAM, continuously decreasing the access time of 
SRAM will also make b increases at a speed of k. Hence, 
the size of SRAM has to be increased exponentially at a 
speed of k3/2.  

In our view, all packet buffering techniques so far have 
adopted a flow-agnostic approach while designing the packet 
buffering algorithms. We must clarify that even though the 
existing approaches do use Q flow queues, each flow is 
treated the same by the buffer management algorithms. No 
effort is made to exploit the inherent characteristics of the 
flows like the arrival rate, burst sizes, transit time 
requirements through the router etc. For small flows, this 
incurs significant overhead, even though there is no 
practical reason to maintain queues among multiple DRAM 
chips to support this flow. However a flow-aware approach 
to the problem, we believe, will yield new possibilities for 
conquering the scalability problem.  

In this paper, we will investigate a new dimension to the 
problem, viz. how to extend the packet buffer architectures 
by using independent packet buffer sub-systems. Such 
distributed system where k independent packet buffers work 
together providing increasing performance but at a linearly 
increasing scale needs to be designed.  

 
Fig. 1. Distributed scalable packet buffer architecture  

Deciding on a suitable distributed system architecture that 
achieves the best overall performance while incurring 
minimal overhead is not straight-forward. As a starting point, 
we consider a simple architecture. Fig. 1 illustrates an 
example of a distributed packet buffer system consisting of 
three compact packet buffers. Each compact packet buffer 
acts as an independent unit implementing its own packet 
buffer architecture and memory management algorithm. 
Flows are mapped to the compact packet buffers and this 
information is tracked in the flow table. A dispatching 
module located between the flow table and packet buffers 
delivers packets according to the tags. A FIFO queue in front 
of each compact buffer deals with short-term bursty traffic, 
and further forms a subsystem together with this compact 
buffer. For the sake of ease of description, this FIFO queue 
is named as front-buffer. 

When a single compact buffer cannot satisfy the buffering 
needs of a flow, then the packet distributor will map the 
same flow to multiple buffers. Similarly, mapping multiple 
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active flows to a single compact buffer may overwhelm it. 
The packet distributor implements a suitable load-balancing 
scheme that keeps track of the information of each compact 
buffer, including the utilization of storage and bandwidth, 
and the number of active queues. Using this information, we 
need to devise a load-balancing algorithm that can figure out 
the best configuration of the flow table and flow mapping.  

In order to achieve the above, we first build a basic 
framework which allows flows to dynamically switch from 
one subsystem to another without any blocking. Unlike the 
simple linked-list based scheme in [16], in our distributed 
system, any flow can be mapped to: 
a) A single subsystem: we refer to such flows as “small” 

flows. 
b) All subsystems: we refer to such flows as “large” flows. 

This distinction for a flow can be applied both at the 
ingress (distributor) and egress (aggregator), thus leading to 
combinations of states. e.g. a flow is in the state of 
“large-small” if it is served by all subsystems in ingress and 
served by only single subsystem in egress. Accordingly, a 
single bit should be introduced to mark this turning point as 
shown in Fig. 2, where each color represents a physical 
queue in each subsystem. 
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Fig. 2. Flow Allocation among Multiple Subsystems 

 
Fig. 3. Flow States 

Fig. 3 shows the state machine we have defined. 
Although there could be thousands of combinations, we 
only reserve six critical states. They are “unallocated”, 
“large”, “small” and three intermediate states “large-small”, 
“small-large” and “large-small-large”. Any flow can switch 
its state between “small” and “large” smoothly with certain 
constrains. Meanwhile, it is strictly controlled that any flow 

can only possess no more than three serving states at any 
time, i.e. at most 2 turning points. This helps the system 
minimize the overhead of state maintenance.  

Based on the state machine above, we devise a 
load-balancing algorithm. The pseudo code of our algorithm 
is shown in Fig. 4. The algorithm is naturally separated into 
three tasks that are implemented at the distributor, compact 
packet buffer subsystem and the aggregator respectively. 
The tasks communicate with each other through the 
centralized flow table.  

Distributor: 
For each cell, derive its flow ID, get access to the flow table accordingly. 
If the state of this flow is “unallocated”, then  
1) Find a subsystem currently the lightest loaded by comparing the length 
of waiting lists in each front-buffer. In case all are equal, select randomly.  
2) Allocate this new flow to an empty queue of the selected subsystem. 
3) Record this information and update the flow state to “small”. 
4) Dispatch this cell accordingly. 
Else if the state of this flow is “small” or “small-large”, then 
Dispatch the cell to the corresponding subsystem accordingly. 
Else then 
Dispatch the cell to the corresponding subsystem in per-flow round-robin*. 
Each Compact Packet Buffer Subsystem: 
Fetch one cell from the front-buffer, save it to the corresponding queue. 
If the number of backlogged cells is no more than THRESHOLD &_ 
 current cell belongs to a flow which is originally severed as large &_ 
 it has been diverted for less than MaxDivertTimes, then  
Update its flow state to small-large, bit-mark this cell as turning point. 
Else if the number of backlogged cells is more than 2* THRESHOLD &_ 
 current cell belongs to a flow which is originally severed as small or 
small-large, then  
Update its flow state to small-large, bit-mark this cell as turning point, 
increase the MaxDivertTimes by one. 
Else then do nothing. 
Aggregator: 
Given a flow ID to fetch,  
1) Delay this request for DelayFactor timeslots 
2) Check the flow table.  
3) Fetch one cell in per-flow round-robin* or from one subsystem only.  
4) If it is a turning point, then update the flow state accordingly. 
 

* per-flow round-robin:  if a packet is the i-th cell in a flow, then it should 
be dispatched into DRAM j, where j = i mod k. 

Fig. 4. Load-balancing algorithm 
Here are some typical behaviors of the load-balancing 

algorithm. Whenever the first cell of a new flow arrives, the 
distributor maps it to a subsystem that is currently the 
lightest loaded. For this new flow, the destination subsystem 
reserves an empty queue and updates the flow table and 
changes the state of this flow from “unallocated” to “small”. 
For a single flow, the state of “small” could last for quite a 
long time. When the queue becomes empty, the state of flow 
is changed back to “unallocated”. 

If a subsystem is temporarily overloaded, (i.e. the 
backlogged cells residing at the front-buffer is beyond a 
threshold.) the subsystem can divert the newly arriving cells 
to other subsystems. The diverting can be achieved by 
randomly changing the state of any new arrival cells to 
“large-small” if it is originally served as “small”. To be 
more precise, the subsystem will still accept any new arrival 
cells. But if the new arrival cells belongs to a flow which is 
originally served by this subsystem only (i.e. its state is 
“small”), the subsystem will mark the cell, and update the 
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flow table by changing its corresponding flow state from 
“small” to “large-small”. At the ingress, if the serving state 
of a flow is changed to “large”, the cells of this flow will be 
dispatched to all subsystems in a per-flow round-robin 
manner. In this fashion, given a distributed system consisted 
with K subsystems, (K-1)/K of the traffic of this “small” 
flow can immediately be diverted to other subsystems which 
helps to relieve the burden of the overloaded subsystem. As 
the output continues, the “large-small” flow will be updated 
to “large” flow when the previously marked cell is fetched.  

Now this large flow can be absorbed by lightly loaded 
subsystems. Generally speaking, it is a reverse process of 
the flow diversion described above except that one state 
called “large-small-large” is introduced. With this state, it 
provides us with an alternative choice that any flow can be 
diverted immediately at any time. 

IV. ANALYTICAL EVALUATION 
In this section, we present a detailed explanation about 

the parameters of our load-balancing algorithm, such as 
MaxDivertTimes, THRESHOLD and DelayFactor. In 
particular, how these parameters affect system performance. 

It is difficult to estimate the traffic of a flow in real life. 
Our load-balancing algorithm introduces a probabilistic 
method which distinguishes the type of flow dynamically. 
Assume a flow contributes P (0<P≤1) unit of traffic and a 
subsystem is capable of serving 1 unit of traffic at most, this 
flow has a probability of P to be diverted when it is served 
as small flow. As the flow state changes dynamically, any 
long-lasting active flow is finally served as a large flow. 
Because the flow which has been diverted for no less than 
MaxDivertTimes cannot be absorbed any longer according 
to the load-balancing algorithm. Our key observation is that 
a flow contributing more traffic has higher probability to be 
diverted. Hence, the expected time that a flow achieves its 
final state could vary greatly. It can be formulated as 
follows, where m equals to the MaxDivertTimes.  

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = ∑ C𝑚𝑚+𝑖𝑖−1
𝑚𝑚−1∞

𝑖𝑖=0 𝑃𝑃𝑚𝑚 (1− 𝑃𝑃)𝑖𝑖 (𝑚𝑚 + 𝑖𝑖)   (1) 

It increases exponentially with P while linearly with m. 
Thus, given average lifetime of flows, we can achieve 
approximation of distinguished services for different flows 
when m is appropriately chosen. e.g. the state of small flow 
varies between large and small rarely and remains small for 
the most of the time. In contrast, a large flow quickly stays 
at “large” after a series of frequent state alternations.  

The proposed load-balancing algorithm only takes the 
bandwidth into consideration. One straightforward concern 
is that the number of active queues in each subsystem could 
vary greatly and further result in unbalanced allocation of 
physical queues. Here, we prove that such kind of 
unbalanced allocation can be neglected when the number of 
active flows is large enough. First, considering a simple 
condition where no subsystem exceeds its maximal capacity. 
Despite the variable size of flows, our load-balancing can be 

seen as a randomized scheduling as long as no cell is 
backlogged cells in the front-buffers. According to the 
chernoff bound [22], in a distributed system with K 
subsystems and c*lnK flows, the probability that the i-th 
subsystem received 1.1 times the average number of flows 
can be formulated as follows.  

 

Pr[𝑋𝑋𝑖𝑖 > (1 + 0.1 ∗ 𝑐𝑐 ∗ ln𝐾𝐾)] < e−
𝑐𝑐∗ln𝐾𝐾

400 = 𝐾𝐾− 𝑐𝑐
400  (2) 

According to the union bound,  

Pr[𝑋𝑋𝑖𝑖 < (1 + 0.1 ∗ 𝑐𝑐 ∗ ln𝐾𝐾) for any 𝑖𝑖 ≤ 𝐾𝐾] > 1 −𝐾𝐾1− 𝑐𝑐400  (3) 

When K=4 and there are 10400 (>5200lnK) flows, there 
is at least 99.99999% chance that no subsystem gets more 
than 1.1 times of the average number of flows.  

Now, let us consider more complicated cases where 
subsystems are unevenly loaded. Since any flow can 
dynamically switch its state between small and large for 
several times and the large flows can be randomly absorbed 
by lightly loaded subsystems, this phenomenon is equivalent 
to randomly dispatch any single flow for many times which 
yields more uniform distribution of active flows. In other 
words, the flow distribution in such cases is at least as good 
as the simple case. Our later simulations confirmed it.   

Next, we present a detailed analysis showing that the 
transfer delay of cells can be upper-bounded by a constant, 
thus a delay lasting for DelayFactor timeslots guarantees 
in-order data operation within each flow. This conclusion is 
based on two key features. First, each cell is transferred 
from front-buffer to DRAM with constant rate. Once a cell 
is dispatched into a subsystem, the only delay lies on the 
queuing delay inside front-buffers. Second, the state 
machine we defined for active flows allows immediate 
diverting at any time and the diverted traffics are always 
dispatched in round-robin fashion. As a result, the proposed 
scheme can be modeled as K independently and identically 
distributed finite capacity M/D/1/n queuing systems.  

Because of space limitation, details are omitted here. 
Trading off between the loss probability and the response 
time, when 𝜌𝜌 = 0.9  (90% traffic intensity), we choose 
n=100 as a typical value of buffer depth for each subsystem. 
Accordingly, the loss probability can be neglected as it 
reaches 10-9. Thus, the response time is upper-bounded by 
100 with a probability of 1-10-9. Given DelayFactor = 100, 
the probability that out-order happens is no more than 10-9. 
Notice that the practical inputs is always time slotted, thus 
the system performance in practice should be at least as 
good as it is derived above. Recall that our load-balancing 
algorithm can perform the same as a greedy algorithm when 
the system is heavily loaded (i.e.100% traffic intensity). 
Thus, the utilization of subsystems is always 100% as long 
as no front-buffer goes empty. In other words, the queuing 
delay has to be finally stabilized with or without the 
speedup. The upper-bound of queuing delay does not rely 
on the speedup. A speedup just helps to reduce it. 

Obviously, the selection of THRESHOLD during this 
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process is extremely important as it determines the time 
when the load-balancing algorithm starts to behave like a 
greedy algorithm. A big THRESHOLD helps to stabilize the 
flow states preventing unnecessary fluctuations. In contrast, 
a small THRESHOLD helps to strength the load-balancing 
increasing the utilization of front-buffers so as to reduce the 
upper-bound of queuing delay. It is straightforward that 
THRESHOLD should be less than 0.5*DelayFactor. We are 
also aware that the utilization of front-buffers with 
load-balancing should be better than that of in a PHSD[19]. 
So THRESHOLD can be further decreased. In the latter 
simulations, we found that the average queuing delay for 
PHSD with 100% traffic intensity is around 50, thus a 
THRESHOLD around 10 should be a good choice. 

V. SIMULATIONS 
Our experimental results are presented in this section. 

Unless otherwise specified, the default for all the 
experiments is as specified in Table 1. 

TABLE. 1. DEFAULT PARAMETERS 
DelayFactor 100 

THRESHOLD 10 
The maximal depth of front-buffers 100 

Number of subsystems 4 

We define a timeslot as the minimal working span where 
each subsystem is capable of processing exactly one cell. 
Since there are four subsystems, for each timeslot, at most 
four cells are generated depending on the traffic intensity. 

Analyses on real-life traces indicated that the top 10% of 
flows account for over 90% of the packets and the bytes 
transmitted [23]. To be modest, in the following simulations, 
top 20% of flows accounts for 80% overall cells.  

Meanwhile, in order to observe the dynamic behavior of 
the entire system, the simulations are always separated into 
three phases. Assume the simulation lasts for X timeslots. 
For the first 0.2*X timeslots, there is only input without 
output where cells are backlogged. In this way, we can 
create an initial backlog and simulate the situation when the 
congestion happens. After 0.2*X+1 timeslots, a full-speed 
output begins while input maintains. With backlogged cells 
in the first phase, we can monitor the system performance in 
detail, especially how the load-balancing algorithm behaves.  
After 0.5*X timeslots, the input stops while only the output 
maintains fetching any backlogged cells. In this way, we can 
simulate the situation when the system is lightly loaded. 
Moreover, we choose the parallel system (i.e. PHSD in [19]) 
as the basic reference standard of our distributed system. 
Because it is the best parallel architecture we known so far 
which represents the previous “flow-agnostic” approaches. 

Fig. 5 presents the results of total number of active 
queues under different situations. There are 100 distinct 
flows in total and the simulation lasts for 107 timeslots. As 
shown in the figures, the parallel system (i.e. PHSD in [19]) 
always dispatches the flows in per-flow round-robin 
introducing a lot of overheads. The total number of active 
queues always achieves 400 during the initial periods no 

 
Fig. 5. The overall active queues for both architectures 

 

Fig. 6. Flow-aware services based on probability method 

  
Fig. 7. Active queues allocations among four subsystems 
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matter the intensity of injected traffic. In contrast, our 
distributed system which introduces the “flow-aware” 
approach always results in much less active queues. Taking 
80% traffic intensity as an example, in the first phase, the 
distributed scheme only maintain around 165 active queues 
which is about 42% that of PHSD. As the second phase 
starts, the number of active queues for both architectures 
drops greatly. However, the distributed one still outperforms 
the PHSD where 35 and 100 queues are maintained 
respectively. As the further decreasing of traffic intensities, 
our distributed system shows more obvious advantages.  

By further prolonging the simulation to 108 timeslots, we 
arbitrarily selected two flows (one large, one small) to have 
a close-up view of their states. As illustrated in Fig. 6, when 
the intensity of traffic is 100%, the flow states of these two 
flows change frequently. We observe that the large flow is 
mapped to multiple subsystems most of the time, while the 
small flow is served by single subsystem mostly. The 
probability method works quite well. 

Since our algorithm does not refer the flow assignment 
status in balancing, we are curious about the actual 
distribution of active queues among subsystems. Fig. 7 
shows the distribution of active queues among multiple 
subsystems. By increasing flow number from 100 to 1000, 
we observe that the unbalanced distribution is greatly 
improved which matches pervious mathematical analyses. 

We also monitor the length of front-buffers. As shown in 
Fig. 8, the average FIFO lengths for both algorithms are 
much less than 100 and the distributed system always 
outperform the parallel one. We clearly observe that the 
average FIFO length of distributed system stays at a 
constant around 16, which matches the mathematic analyses 
as well. Besides smaller average value of FIFO length, the 
distributed system also performs more smoothly. 

 

 
Fig. 8. The number of backlogged cells in a front-buffer 

VI. CONCLUSION 
Unlike the previous approaches [1][14]-[19], our design 

dispenses with both the head and tail caches, keeping only 
tiny distributed front-buffers inside each subsystem. Each 
flow is only mapped to approximately one queue in a 
compact buffer. Thus, it maintains much less physical queues 
compared to other approaches and reduces the size of 
SRAM significantly. 

The significance of this research lies in the bold new 

direction towards distributed scalable buffer design that we 
plan to pursue. In particular, our approach yields a scalable, 
independent subsystem based packet buffer architecture that 
can easily be tailored to meet the specific line rate and traffic 
requirements for different switches, and match the flow-level 
requirements including bandwidth and delay guarantees 
within a switch. Our approach will also yield a power 
efficient buffer design, where parts of the buffer may be 
switched on and off based on the real-time traffic arrival rates 
and buffering requirements.  
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